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Real-time restoration of rotational blurred image

using gradient-loading
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The key to the restoration of rotational motion blurred image is how to restore the image under a low
cost and to correct the irreversibility of the degradation function matrix. Based on the special qualities
of degradation function matrix and precise deduction in space-domain, we present a new approach using
gradient-loading for restoration of rotational blurred image. By easily adding a gradient operator, the
irreversibility of the original matrix is corrected and can be applied for inverse filtering then. Gradient-
loading is the optimized approach which combines the advantages of both the approaches using constrained
least square filtering and traditional diagonal-loading. Compared with the approach using least square
filtering, its peak signal-to-noise ratio (PSNR) is improved from 3.18 to 6.46 dB, while the computing time
is reduced to 1/2− 1/3. Experimental results demonstrate the effectiveness, noise-resistibility, robustness,
and low complexity of this approach, which make it more suitable for real-time environment.

OCIS codes: 100.0100, 100.3020, 100.5760.

Rotational motion blur often occurs in the field of ma-
chine vision and television guidance. The rotational mo-
tion between the camera and the target during the im-
age capturing will result in serious degradation of image.
Such degradation will cause great trouble for the succeed-
ing jobs such as video stabilization and image matching.
So to remove the rotational motion blur is an inevitable
problem. Li et al. presented the approach of restora-
tion of blurred images with phase diversity-based blind
deconvolution[1]. Hu et al. introduced the increamental
Wiener filters into the image deconvolution of wavefront
sensing[2]. These approaches are proved effective in the
restoration of common motion blur. However, rotational
motion blur is much more complex than common one,
because it is space-variant. The extent of blur becomes
more and more serious along the radius from the center.

To solve this problem, Bonmassar et al. presented a
solution using geometric transformation[3]. They try to
transform the special problem of rotational blur to the
common motion blur by gray-level interpolation. But
huge amount of gray-level interpolation causes much de-
viation and noise, complexity of algorithm, and costs too
much computing time for real-time environment. Based
on the constrained least square filtering[4,5], Hong et al.

introduced the approach for rotational motion blurred
image by the means of deconvolution along the blur
paths[6]. Through constraint of least square filtering,
the irreversibility in the restoration is corrected and more
satisfied result is got with less cost. But there is a kind
of hypercorrectness so that the restored image is over-
smoothened and the complexity is still too high for real-
time environment.

Based on the study on the degradation function matrix
of rotational blur, we present a new approach for restora-
tion of rotational blur image using gradient-loading.
Compared with the approach using constrained least
square filtering, its peak signal-to-noise ratio (PSNR)
is improved from 3.18 to 6.46 dB, while the comput-

ing time is reduced to 1/2 − 1/3. This approach further
improves the visual effect, anti-capability, and robust-
ness with great reduction in the complexity of algorithm,
which makes it more suitable for real-time environment.

In the process of rotational motion, the total exposure
at any point is obtained by integrating the instantaneous
exposure over the time interval during which the shut-
ter is open. According to the distance r from the rota-
tional center, the whole image can be divided into a series
of concentric circles, along which the intensity values of
some pixels are accumulated. Such circles are defined
as the blur-path to the pixels with same radius. So the
problem becomes how to remove the blur along the par-
ticular blur-path.

Let f(x, y) be the original value of the pixel and g(x, y)
be the degraded one, then in the exposure time T and
angular velocity ω, there is[5]

g (x, y) =
1

T

∫ T

0

f (x − r cos(ωt), y − r sin(ωt))dt,

r =
√

x2 + y2. (1)

Using polar coordinate, it becomes

g (r, θ) =
1

T

∫ T

0

f (r, θ − ωt) dt. (2)

Setting s = rωt, a = rωT , l = rθ, Eq. (2) becomes

g (r, l) =
1

a

∫ a

0

f (r, l − s) ds. (3)

For particular blur-path, Eq. (3) is revised as

gr (l) =
1

ar

∫ ar

0

fr (l − s) ds. (4)

After unwinding the blurring path and using discrete
coordinate i to express l, the formula in the discrete form
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can be presented as

gr (i) =
1

ar

ar−1
∑

x=0

fr (i − x), (5)

where i = 0, 1, · · · , Nr − 1; gr (i) and fr (i) are the se-
quences of original and degraded gray values of the pixels
along blurring path with the period of Nr.

Let h (x) =

{

1/a 0 ≤ x ≤ a − 1
0 a ≤ x ≤ N − 1

, where h (x) is

the point spreading function (PSF) of the blurring path,
Eq. (2) can be expressed as[5]

g (i) =

N−1
∑

x=0

f (x)h (i − x). (6)

Thus, in matrix form, it can be expressed as g = Hf ,
where g and f are the N ×1 vectors of gray values corre-
sponding to f(i) and g(i) (i = 0, 1, · · · , Nr − 1). Here H
is exactly the matrix form of degradation function. As an
N × N matrix resulting from the PSF, H is changeable
for different blurring-path. Because its inverse matrix
does not have to exist, there is irreversibility in the in-
verse filtering. On the other hand, simply using inverse
filtering will cause instability if it contains noise in the
process of capturing image.

Hunt presented the constrained least square filtering in
the restoration of common motion blur by adding Laplace
operator as constrainer item to solve the irreversibility of
matrix. The final result is[6]

f =
(

HTH + λDTD
)

−1
HTg. (7)

But it is still not suitable for real-time environment be-
cause of too much computation with high-order matrix.
It seems to be a kind of hypercorrectness because the
restored image is something over-smoothed, which may
cause some trouble in the succeeding job.

As mentioned before, degradation function matrix H
is a cyclic matrix, thus it has some particular character-
istics that can be taken advantage of. Next we will make
precise deduction on it to find these characteristics that
can be applied in our new approach.

Define the basic cyclic matrix as

D =











0 1 0 · · · · · · 0
0 0 1 0 · · · 0
0 · · · · · · 1 · · · · · ·
· · · · · · · · · · · · · · · 1
1 0 · · · · · · · · · 0











. (8)

Obviously, D, D2, D3, · · · , Dn are all cyclic matrices,
and Dn = I. Thus, for general cyclic matrix

A =











a0 a1 a2 · · · · · · an−1

an a0 · · · · · · · · · an−1

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
a1 a2 · · · · · · an−1 a0











, (9)

according to Eq. (8), it can be expressed as A = a0I +
a1D + a2D

2 + · · · + an−1D
n−1.

Setting f(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1, then
we can get

A = f(D). (10)

It is proved that the basic cyclic matrix D can
be diagonalized[7−9], and it is similar to the diag-
onal matrix Λ = diag(λ0, λ1, λ2, · · · , λn−1), where
λ0, λ1, λ2, · · · , λn−1 are the eigenvalues of D, that is,

D = P−1ΛP,

λk = cos
2kπ

n
+ i sin

2kπ

n
= ei 2kπ

n ,

k = 0, 1, 2, · · · , n − 1. (11)

Thus, combining Eqs. (10) and (11), it yields

A = f(D) = f(P−1ΛP ) = a0P
−1P + a1P

−1ΛP

+a2P
−1Λ2P + · · · + an−1P

−1Λn−1P

= P−1diag(f(λ0), f(λ1), · · · , f(λn−1))P. (12)

Equations (10)− (12) prove that general cyclic matrix
can also be diagonalized, and the eigenvalues are

ωk = f(λk) =
n−1
∑

t=0

atλ
t
k, (13)

where λk = ei 2kπ

n , k = 0, 1, 2, · · · , n − 1.
By using the definition in Eq. (8), we can use basic

cyclic matrix to express the degradation function matrix,

H =
1

a
(I + D + D2 + · · · + Da−1). (14)

According to Eq. (13), the eigenvalues of H are

ξk =
1

a

a−1
∑

n=0

ei 2πkn

N , k = 0, 1, 2, · · · , N − 1. (15)

Only when all of the eigenvalues of H are nonzero, will
the matrix be reversible. For any of k = 0, 1, 2, 3, · · · , N−
1, it requires ka/N not to be integer, otherwise, H will be
irreversible, which will cause the irreversibility of inverse
filtering. In fact, such qualification is too hard to meet
when the order of H is high, so there must be a solution
with amendment.

Diagonal-loading is exactly such a solution, which is
firstly used in beam-forming to correct the irreversibil-
ity of covariance matrix and suppress the interference
of side lobes[10,11]. Elnashar et al. proved the robust-
ness of diagonal-loading in correcting the invalidation of
matrix[12].

Though the restoration approach based on traditional
diagonal-loading avoids the irreversibility of degradation
function matrix under such a low cost, the direct use of
traditional diagonal-loading in image processing is still
a problem. By adding a positive λ, the small eigenval-
ues of system are pulled approximate to it with little
influence on the main eigenvalues relatively. Thus the
side lobes are restrained and could be recognized clearly
from the main ones. But for image processing, such high-
frequency emphasis is not permitted because it will make
the noise “whitened” and cause some salt-pepper noise.
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Such phenomenon is not allowed in image restoration be-
cause it will cause the reduction of system anti-noise ca-
pability.

According to the above analysis, gradient-loading shall
be a perfect solution. Define a gradient operator

∇f = f(x + 1) − f(x). (16)

Let ∇ be the matrix of gradient operator, that is,

∇ =











1 0 · · · 0 −1
−1 1 0 · · · 0
0 · · · · · · 0 · · ·
· · · · · · −1 1 0
0 · · · 0 −1 1











. (17)

Obviously, ∇ is also a cyclic matrix.
Thus, according to Eqs. (9) and (10), ∇ can be ex-

pressed as

∇ = 1 − Dn−1. (18)

Similar to the processing of diagonal-loading, let

Ĥ = H + λ∇, (19)

then Ĥ is also a cyclic matrix and can be expressed by
the basic cyclic matrix as

Ĥ =
1

a
(I + D + D2 + · · · + Da−1 + λ∇). (20)

According to Eqs. (10)− (12), eigenvalues of Ĥ can be
expressed as

ξk = f(λk) =
1

a

a−1
∑

n=0

ei 2πkn

N + λ = M + λ∇, (21)

where M = 1
a

a−1
∑

n=0
einθ denotes the eigenvalues of H ,

θ = k
N

2π, k = 0, 1, 2, · · · , N − 1.

Then the eigenvalues of Ĥ can be expressed as

ξk = M + λ(1 − ei(N−1)θ). (22)

Suitable coefficient shall be determined for gradient-
loading to keep ξk nonzero. As shown in Fig. 1, the vector
of M must be on the circle whose center is ( 1

2a
, 1
2a tan θ

2

)

and radius is 1
2a sin θ

2

. Thus ξk will be nonzero if the

loading item is out of the circle that is center symmetric
to the one of M . Meanwhile, λ should also keep positive
so that the restored image will be smoothed instead of
sharpened. Combining all of the restrictions above, the
final form of estimate value can be expressed as

Fig. 1. Analysis of the eigenvalues in the form of vectors.

f̂ = (H + λ∇)−1g, (23)

where λ > 0 and λ 6= 1
2a tan θ

2

.

By such a simple form, the irreversibility of the degra-
dation function matrix H is corrected. Compared with
diagonal-loading, gradient-loading has the totally same
form without any rise of algorithm complexity. Com-
pared with the traditional solution using constrained
least square filtering as Eq. (7), it avoids most of the
multiplication of high-order matrix, which makes it more
suitable for real-time environment.

We have applied the new approach to restore the rota-
tional blurred images, as shown in Fig. 2. Let the original
image be rotationally blurred by 15◦, and the rotational
center is exactly the center of image. Figures 2(c)—(e)
are the restoration results by different approaches.

Besides the visual effect, we also use PSNR and im-
provement of signal-to-noise ratio (ISNR) as objective
measures. ISNR can be defined in decibels as

ISNR = 10 log10

∑

m

∑

n

|f − g|
2

∑

m

∑

n

∣

∣

∣
f − f̂

∣

∣

∣

2 , (24)

where m, n are the size of the image.
And we also use the PSNR defined as

PSNR = 10 log10

∑

m

∑

n

2552

∑

m

∑

n

∣

∣

∣
f − f̂

∣

∣

∣

2 . (25)

The result using diagonal-loading gets a best visual
effect with high sharpness (Fig. 3(d)). But as analyzed
before, it shows the effect of high-frequency emphasis.
The image is corrupted by salt-pepper noise lightly. Its
ISNR = 31.36 dB and PSNR = 3.18 dB. Figure 3(c)
is the result using constrained least squares. Its visual
effect is not so good, but it get a much better result in
signal-to-noise ratio (SNR), for its ISNR = 33.81 dB and
PSNR = 5.63 dB. Still the result is not satisfying because
it is over smoothened as proved in the previous analysis.

Fig. 2. Restoration of practical image. (a) Original image; (b)
rotationally blurred image by 15◦; (c) result of constrained
least square filtering; (d) result of diagonal-loading filtering;
(e) result of gradient-loading filtering.
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Fig. 3. Experiment on anti-noise capability and robustness.
(a) 15◦ blurred image corrupted by Gaussian noise with
SNR = 10 dB; (b) image restored using gradient-loading; (c),
(d), (e), (f) are images restored by mistaking the parameters
as 13◦, 14◦, 16◦, 17◦, respectively.

And its computing time is several times longer than
diagonal-loading. As shown in Fig. 2(e), the approach
using gradient-loading is a good compromise. It preserves
the sharp transition and thus keep a high sharpness and
better visual effect. On the other hand, it protects the
image from being corrupted by noise as diagonal-loading
does. For the result, we get ISNR = 34.64 dB and
PSNR = 6.46 dB, that is the best one among the three.
Thus the approach using gradient-loading perfectly bal-
anced the anti-noise capability and sharpness and could
be the best solution. And its computing time is almost
the same as diagonal-loading.

For practical use, there are still many random fac-
tors such as noise. As shown in Fig. 3(a), there is a 15◦

blurred image, which is corrupted by Gaussian noise with
SNR = 10 dB. Through approach using gradient-loading
to restore the image, we restore the image in Fig. 3(b).
The result shows a good visual effect with ISNR = 34.22
dB and PSNR = 6.03 dB.

On the other hand, robustness means fault-tolerance.
It requires the system to work efficiently even though
there is minor mistake. We simulate the instance that
there are some errors about the rotational blur angle with
a range of ±2◦. The parameters are mistaken as 13◦, 14◦,
16◦, and 17◦, respectively, as shown in Fig. 3(c)—(f). In
such situation, it will cause a strong instability if we still
use inverse filtering or diagonal-loading. By using the
gradient-loading filtering, the error of parameter causing
some difficulty on the restoration are still acceptable.
The PSNRs of the restored image are 3.71, 4.23, 4.01,
and 3.57 dB, respectively.

All the experiments are processed on the platform of

Table 1. Comparison of the Processing Time

Image Size (pixel) 50 × 50 100 × 100 200 × 200

Constrained Least Square 0.124 s 1.100 s 17.789 s

Diagonal-Loading 0.061 s 0.364 s 5.803 s

Gradient-Loading 0.066 s 0.421 s 6.339 s

Matlab7.0, using a computer with Pentium4 1.4 GHz. As
shown in Table 1, images of different sizes are restored
using the three approaches respectively, and the whole
processing time is recorded. It shows the trend that the
processing time has a rise of exponential level with the
increase of image size. For the approach using gradient-
loading, the processing time is almost the same as the
one using diagonal-loading, and both are 1/2 − 1/3 less
than the time for constrained least square filtering. Thus,
we can see that gradient-loading combines the advan-
tages of the other two and even does better. Compared
with diagonal-loading, it improves the visual effect, anti-
noise capability, and robustness without any rise of time
complexity. Both diagonal-loading and gradient-loading
have a great reduction on complexity than constrained
least square filtering, which makes them more suitable
for real-time environment.

In brief, this paper presents the approach for restora-
tion of rotational blur image based on gradient-loading.
In comparison with former solutions such as constraint
least square or diagonal-loading, our approach demon-
strates the effectiveness, anti-noise capability, and ro-
bustness. At the same time, it greatly reduces the com-
plexity and computing time, which makes it more suit-
able for real-time environment.
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